Photonic Integrated Circuits
Photonic Integrated Circuits

- Planar lightwave circuits
- Integrated optoelectronic devices
- Wafer-scale technology on substrates (chips)
- Technology limitations
Photonic Integrated Circuits - Technologies

- III-V Integration Platforms
- Silicon Photonics
- Silica-on-Silicon - Silica glass (fused Silica)
- Polymer Integration Platforms
- Lithium niobate (LiNbO₃)
III-V Semiconductor Technology

Advantages
- Solutions for:
 - Lasers
 - Optical amplifiers
 - Modulators
 - Detectors
- Monolithic integration of passive/active components within fully functional chips
- Ultra-high speed EO characteristics
- High reliability

Disadvantages
- Extensive integration approach due to CMOS incompatibility
- Increased propagation losses (>0.5 dB/cm)
- Limitations of mass production due to small wafers (InP)
- Low index contrast (\(\Delta n/n\))
III-V monolithic integration of complex devices for...

- **Telecom (1)-(3)**
- **Datacom (5),(7)**
- **Sensing (4),(6)**
- **Bio-Medical (8)**

Meint Smit et al, “A Generic Foundry Model for InP-based Photonic ICs, presented at OFC, paper OM3E, March 4-8, 2012, Los-Angeles, CA, USA

Hybrid integration on Si-based platforms

- GaInNAs(Sb) SOAs flip-chip bonded on SOI
- GaAs -and InP-based hybrid integration on SOI platform:

ICT-GALACTICO

ICT-BOOM

ICT-RAMPLAS
Silicon Photonics: Overview

Future promise

- Photonic components (i.e. modulators, detectors, sources) fully compatible with CMOS technology
- Photonic links may replace copper links for very short distances and co-exist with electronics in functional optoelectronic chips

- Ability to reuse the huge technology base and supply chain from electronics industry
Silicon Photonics: Key characteristics

- **Advantages**
 - Low cost
 - Take advantage of CMOS platform
 - High index contrast -> strong light confinement -> small footprint
 - Transparent in 1.3-1.6 um region
 - Devices with sub-wavelength dimensions feasible

- **Disadvantages**
 - *Indirect* bandgap material
 - *No or weak* electro-optic effect
 - Relatively lossy waveguides
 - Lacks efficient *light emission* - no electrically pumped Si laser
Silicon Photonics: towards silicon laser

- **Approach**
 - hybrid silicon photonic integrated circuit technology
 - bonding of functional III-V active components onto silicon-on-insulator substrates
 - bonding of III-V epitaxial layers
 - wafer or die bonding of III-V films on Si and processing thereof
 - hetero-epitaxial growth of III-V on Si
 - selectively grow III-V crystals on Si substrate
 - selective growth of Germanium on Si
 - growth of Ge layers on silicon oxide trenches

- InP VCSELs on SOI: ICT-MIRAGE
- microdisc laser: ICT-HELIOS
- microdisc laser: UCSB
- Ge laser: MIT
Glass: Overview

Main technology implementations
- silica-on-silicon
- laser inscription on glass
- TriPlex

How it works
- Waveguiding in glass (SiO2)
- Introduce dopants to create index difference (small to medium): similar material & dopants used in optical fibers
- SiO₂ surrounded and encapsulated by high index Si₃N₄ cladding/box section
Glass: Key characteristics

Advantages

- Low propagation loss (<0.01 dB/cm)
- Low polarization dependence
- Broad wavelength coverage (vis. to IR)
- Low-loss coupling to single-mode fiber (less than 1 dB typical, 0.15 dB is feasible)
- Weak thermo-optic effect: low temperature dependence
- Reliable material, tolerance to environmental

Disadvantages

- Large modal area and bending radius: low density integration
- Limited active functionalities available, most remain in the lab (e.g. amplification)
- Weak thermo-optic effect: not so efficient for λ-tuning functions
- Fabrication may involve more costlier processes than competitive technologies for passive component integration (e.g. polymers)
Glass: applications

Passive components
(commercial)

- WDM multiplexers
- FTTH splitters
- thermo-optic switches

Hybrid integration of complex devices

- III-Vs
- LiNbO₃
- polymers

III-V integration on silica-on-silicon platform:
ICT-APACHE
Polymers: Overview

- Main material systems
 - SU-8, PMMA, ZPU-12, etc
 - Blending polymer solutions to achieve precise control of material optical properties

- Main types of polymer platforms
 - Passive
 - Electro-optic
 - Active
Polymers: Key characteristics

• **Strengths**
 - Low propagation loss (<0.5 dB/cm)
 - Low birefringence
 - Precise and continuous engineering of material properties
 - Unique properties (large TO, EO, non-linear)
 - Good and easy ability to process
 - Ease of hybrid integration via butt coupling

• **Weaknesses**
 - Low index contrast, bulky device
 - Not suitable for high temperature process
 - Some materials raise reliability issues
 - No full suite of active functionalities available out of the lab
Polymers: Applications

- Hybrid Optical/Electrical datacom PCBs
 - Waveguide PCB integration
 - Cards for optical backplane

- 40G and 100G communication applications
 - High speed Mach-Zehnder modulators
 - Variable optical attenuator arrays
Disruptive Technologies Overview: Plasmonics

- **How it works**
 - **Surface plasmons**: coherent electron oscillations at a metal–dielectric interface
 - **Surface plasmon polaritons**: plasmons excited by visible or infrared electromagnetic waves
 - **Localized surface plasmon resonance**: collective oscillation of electrons in nanometer-sized structures

- **Potential applications**
 - **Chip-scale communications**: Interconnects
 - **Sensing**: Biosensors, lab-on-a-chip
Disruptive Technologies Overview: Photonic Crystals

- **How it works**
 - **Photonic Crystals (PhC):** material with periodic dielectric constant in some particular dimensions (1D, 2D, 3D)
 - **Principle of operation:** if periodicity lattice is in the order of wavelength of light, it will reflect the light in the particular wavelength
 - Create range of forbidden wavelengths, called photonic bandgap, that cannot propagate through the PhC medium
 - Introduce defects in lattice to trap light and create a non-TIR based waveguide

- **Main technology implementations**

<table>
<thead>
<tr>
<th>Waveguide Components</th>
<th>Photonic Crystal Fibers</th>
<th>Slow light Modulators</th>
<th>Evanescent Fiber Coupling</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Disruptive Technologies Overview: Carbon-based materials

- How it works
 - Graphene:
 - 2-dimensional, crystalline allotrope of carbon / 1-atom thick layer of graphite
 - Absence of bandgap – absorbs light over wide spectral range (ultraviolet to terahertz)
 - Material optical properties can be modified by externally tuning the bandgap of graphene layers and bi-layers
 - Carbon nanotubes (CNT):
 - Allotropes of carbon with cylindrical nanostructure based on honeycomb carbon lattice
 - Depending on lattice orientation, CNT acts as metal or semiconductor
 - Semiconductor CNTs are direct bandgap materials and can be used to generate and detect light
 - Single- or multi-walled nanotube configurations are possible
Silicon Photonics

Photonic Integrated Circuits Example
Silicon Photonics Wafer Fabrication

https://www.youtube.com/watch?v=AMgQ1-HdElM
Silicon Photonics: Design

- **Crossection**
 - The transverse impression of the integration platform
 - Depends on the integration technology
 - Varies according to the process flow
 - Can be directly imported in the crossection simulation tools (mode solvers)
Silicon Photonics: Design

- **Waveguide mode**
 - Electric field distribution in spatially inhomogeneous structures (waveguides)
 - Self-consistent during propagation
 - The shape of the complex amplitude profile in the transverse dimensions must remain exactly constant

- **Effective index**
 - In homogeneous transparent media, the refractive index n can be used to quantify the increase in the wavenumber (phase change per unit length) caused by the medium
 - The *effective refractive index* n_{eff} has the analogous meaning for light propagation in a waveguide
 - Depends not only on the wavelength but also (for multimode waveguides) on the mode in which the light propagates