Optical peRformanCe monitoring enabling dynamic networks using a Holistic cross-layEr, Self-configurable Truly flexible appRoAch

PCRL participates in the ORCHESTRA project which aims to develop a highly-flexible optical network that can be dynamically reconfigured and optimized. It does this by constantly monitoring impairment information provided by the network’s coherent transceivers that are extended, almost for free, to operate as software defined multi-impairment optical performance monitors (soft-OPM). Information from multiple soft-OPMs can be correlated to infer information for unmonitored or un-established paths, effectively supporting alien wavelengths, and localize QoT problems and failures. The network is viewed as a continuously running process that perceives current conditions, decides, and acts on those conditions. ORCHESTRA‘s advanced cross-layer optimization procedures will be implemented within a new specifically designed library module, called DEPLOY. A new dynamic and hierarchical control and monitoring (C&M) infrastructure will be then created to interconnect the multiple soft-OPMs and the proposed virtual and real C&M entities running the DEPLOY algorithms, exploiting the reconfigurability capabilities of enhanced tunable transceivers. At the top of the hierarchical infrastructure, a novel OAM Handler prototype will be implemented, as part of the SDN-based ABNO architecture. The proposed C&M infrastructure will be enriched with active-control functionalities, closing the control loop, and enabling the network to be truly dynamic and self-optimized.

PCRL’s role in the project is concerned with the physical layer aspects of ORCHESTRA. Specifically, it will develop a flexible optical transceiver prototype based on discrete commercial components, capable of multiple QAM formats and variable throughputs. PCRL will also develop DSP algorithms for software-defined impairment-monitoring.